Applications & Interpretation

1 Page Formula Sheet IB Mathematics SL & HL

First examinations 2021

Prior learning – SL & HL		
Area: parallelogram	A = bh, b =base, h =height	
Area: triangle	$A = \frac{1}{2}(bh)$, b =base, h =height	
Area: trapezoid	$A = \frac{1}{2}(a+b)h$, a,b =parallel sides, h = height	
Area: circle	$A = \pi r^2$, $r = \text{radius}$	
Circumference circle	$C = 2\pi r$, r = radius	
Volume: cuboid	V = lwh, $l = length$, $w = width$, $h = height$	
Volume: cylinder	$V = \pi r^2 h$, r =radius, h =height	
Volume: prism	V = Ah, A= cross-section area, h=height	
Area: cylinder curve	$A = 2\pi rh$, r =radius, h =height	
Distance between two points $(x_1, y_1), (x_2, y_2)$	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$	
Coordinates of midpoint	$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	
Prio	r learning – HL only	
Solutions of a quadratic equation	$x = \frac{ax^2 + bx + c = 0}{-b \pm \sqrt{b^2 - 4ac}}, a \neq 0$	

Topic 1: Number and algebra – SL & HL

SL 1.2	The n^{th} term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
	The sum of <i>n</i> terms	$S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$
SL 1.3	The n^{th} term of a geometric sequence	$u_n = u_1 r^{n-1}$
	The sum of <i>n</i> terms	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, r \neq 1$
SL 1.4	Compound interest	$FV = PV \times (1 + \frac{r}{100k})^{kn}$
		FV is the future value, PV is the present value, n is the number of years,
		k is the number of compounding periods per year,
SL	F	r% is the nominal annual rate of interest
1.5	Exponents & logarithms	$a^x = b \iff x = log_a b, a > 0, b > 0, a \neq 1$
SL 1.6	Percentage error	$\varepsilon = \left \frac{v_a - v_e}{v_e} \right \times 100\%$
		v_e =the exact value and v_a =the approximate value
	Topic 1: No	umber and algebra – HL only
AHL 1.9	Laws of logarithms	$log_a xy = log_a x + log_a y$
		$log_a \frac{x}{y} = log_a x - log_a y$
		$log_a x^m = m log_a x $ For $x, y, a > 0$
AHL 1.11	The sum of an infinite	$S_{\infty} = \frac{u_1}{1-r}, r < 1$
AHL	geometric sequence	
1.12	Complex numbers Discriminant	$z = a + bi$ $\Delta = b^2 - 4ac$
AHL 1.13	Modulus-argument (polar) &	$z = r(\cos\theta + i\sin\theta) = re^{i\theta} = rcis$
	exponential (Euler) form	
AHL 1.14	Determinant of a 2×2 matrix	$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \to det \ A = A = ad - bc$
	Inverse of a 2×2 matrix	$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
AHL 1.15	Power formula for a matrix	$M^n = PD^nP^{-1}$, where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues

	Topi	ic 2: Functions – SL & HL
SL 2.1	Equations of a straight line	y = mx + c; $ax + by + d = 0$; $y - y_1 = m(x - x_1)$
	Gradient formula	$m = \frac{y_2 - y_1}{x_2 - x_1}$
SL 2.5	Axis of symmetry of a quadratic function	$f(x) = ax^2 + bx + c \rightarrow x = \frac{-b}{2a}$
	Торі	ic 2: Functions – HL only
AHL 2.9	Logistic function	$f(x) = \frac{L}{1 + Ce^{-kx}}, L, k, C > 0$

Topic 3: Geom	netry and trigonometry – SL & HL
Distance between two points (x_1, y_1, z_1)	$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$
& (x ₂ , y ₂ , z ₂) Coordinates of the midpoint of a line segment	$\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}; \frac{z_1+z_2}{2}\right)$
3.1 Volume: right- pyramid	$V = \frac{1}{3}Ah$, $A = $ base area, $h = $ heigh
Volume: right cone	$V=rac{1}{3}\pi r^2 h$, r = radius, h = height
Area: cone	$A = \pi r l$, r = radius, l = slant height
Volume: sphere	$V = \frac{4}{3}\pi r^3, r = \text{radius}$
Surface: sphere	$A = 4\pi r^2, r = \text{radius}$
Sine rule	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
Cosine rule	$c^{2} = a^{2} + b^{2} - 2ab \cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$
Area of a triangle	$A = \frac{1}{2}ab \sin C$
Length of an arc	$l = \frac{\theta}{360} \times 2\pi r;$ θ = angle in degrees, r = radius
Area of a sector	$A = \frac{\theta}{360} \times \pi r^2$
Tonic 3: Geom	θ = angle in degrees, r = radius etry and trigonometry – HL only
Length of an arc	$l=r\theta$; $r=$ radius, $\theta=$ angle in radians
AHL 3.7 Area of a sector	$A = \frac{1}{2}r^2\theta$
	$\cos^2\theta + \sin^2\theta = 1$
AHL 3.8 Identities	$tan \theta = \frac{\sin \theta}{\cos \theta}$
Transformation matrices Magnitude of a	$ \begin{array}{ll} (\cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta) \\ \text{reflection in the line } y = (\tan \theta)x \\ \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \\ \text{horizontal stretch by scale factor of } k \\ \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} \\ \text{vertical stretch with scale factor of } k \\ \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \\ \text{centre } (0,0) \\ \text{enlargement with scale factor of } k \\ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \\ \text{, anticlockwise rotation of angle } \theta \text{ about the origin } (\theta > 0) \\ \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \\ \text{, clockwise rotation of angle } \theta \text{ about the origin } (\theta > 0) \\ \end{array} $
3.10 vector	111 - 112 + 112 + 112
Vector equ. of a	$ v = \sqrt{v_1^2 + v_2^2 + v_3^2}$
line	$r = a + \lambda b$
AHL 3.11 Parametric form of the	
line AHL 3.11 Parametric form	$r = a + \lambda b$ $x = x_0 + \lambda l, y = y_0 + \lambda m, z = z_0 + \lambda n$ $v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$ $v \cdot w = v w \cos\theta$ $\theta : \text{angle between } v \text{ and } w$
AHL AIL Parametric form of the Equ. of a line	$r = a + \lambda b$ $x = x_0 + \lambda l, y = y_0 + \lambda m, z = z_0 + \lambda n$ $v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$ $v \cdot w = v w \cos \theta$
AHL 3.11 Parametric form of the Equ. of a line Scalar product Angle between	$r = a + \lambda b$ $x = x_0 + \lambda l, y = y_0 + \lambda m, z = z_0 + \lambda n$ $v \cdot w = v_1 w_1 + v_2 w_2 + v_3 w_3$ $v \cdot w = v w \cos \theta$ $\theta : \text{angle between } v \text{ and } w$ $\cos \theta = v_1 w_1 + v_2 w_2 + v_3 w_3$

The IB aims to develop inquiring, knowledgeable and caring young people who help to create a better and more peaceful world through intercultural understanding and respect.

		stics and probability – SL & HL
SL 4.2	Interquartile range	$IQR = Q_3 - Q_1$
SL 4.3	Mean, \bar{x} , of a set of data	$\bar{x} = \frac{\sum_{i=1}^k f_i x_i}{n}$, where $n = \sum_{i=1}^k f_i$
	Probability of an	$P(A) = \frac{n(A)}{n(u)}$
SL 4.5	event A Complementary	
	events	P(A) + P(A') = 1
-	Combined events Mutually exclusive	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
. [events	$P(A \cup B) = P(A) + P(B)$
SL 4.6	Conditional	$P(A B) = \frac{P(A \cap B)}{P(B)}$
-	probability Independent	$P(A \cap B) = P(A)P(B)$
-	events Expected value of a	$r(A \cap B) = r(A)r(B)$
SL 4.7	discrete random	$E(X) = \sum x P(X = x)$
\square	variable X Binomial	·
SL 4.8	distribution	$X \sim B(n, p)$ $E(Y) = nn \cdot Var(Y) = nn(1 - n)$
	Mean -Variance	E(X) = np; Var(X) = np(1-p)
T	Topic 4: Stat	istics and probability – HL only
	transformation of	E(aX + b = aE(X) + b
	a single random variable	$Var(aX += a^2Var(X))$
ŀ	Linear	$E(a_1X_1 \pm a_2X_2 \pm \dots \pm a_nX_n)$
AHL 4.14	combinations of n	$= a_1 E(X_1) \pm a_2 E(X_2) \pm \pm a_n E(X_n) Var(a_1 X_1 \pm a_2 X_2 \pm \pm a_n X_n)$
→.14	independent random variables,	$Var(a_1X_1 \pm a_2X_2 \pm \pm a_nX_n) = a_1^2 Var(X_1) + a_2^2 Var(X_2) +$
	X_1, X_2, \ldots, X_n	$+ a_n^2 Var(X_n)$
ľ	Unbiased estimate	c2 = " c2 Compt = -t-xi-xi
	of population variance	$s_{n-1}^2 = \frac{n}{n-1} s_n^2$ Sample statistics
\Box	Poisson	
AHL 4.17	distribution Mean	
AU:	Variance	
AHL 4.19	Transition matrices	$T^n s_0 = s_n$, where s_0 is the initial state
SL	Derivative of x^n	c 5: Calculus – SL & HL $f(r) = r^n \rightarrow f'(r) = nr^{n-1}$
5.3		$f(x) = x^{n} \to f'(x) = nx^{n-1}$ $\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
	Integral of x ⁿ	$\int x^n dx = \frac{1}{n+1} + C , n \neq -1$
SL 5.5	Area of region enclosed by a	, db
	curvey=f(x)	$A = \int_a^b y dx$, where $f(x) > 0$
	and the x-axis	(b) du ou 1 b((1 1 - 2) + 24 .
SL 5.8	The trapezoidal rule	$\int_{a}^{b} y dx \approx \frac{1}{2} h((y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}))$
		c 5: Calculus – HL only
	Derivative of sin x	$f(x) = \sin x \to f'(x) = \cos x$
	Derivative of	$f(x) = \cos x \to f'(x) = -\sin x$
	cosx Derivative of	1
	tan x	$f(x) = \tan x \to f'(x) = \frac{1}{\cos^2 x}$
AHL	Derivative of e^x	$f(x) = e^x \to f'(x) = e^x$
5.9	Derivative of $ln\ x$	$f(x) = \ln x \to f'(x) = \frac{1}{x}$
	Chain rule	$y = g(u), u = f(x) \rightarrow \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
		Av Au Au
	Product rule	$v = uv \rightarrow \frac{dy}{dx} = u \frac{dv}{dx} + u \frac{du}{dx}$
		$y = uv \to \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
		$y = uv \to \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
	Product rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$
	Product rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$
	Product rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$
AHL 5.11	Product rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$
	Product rule Quotient rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$
	Product rule Quotient rule	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$
	Product rule Quotient rule Standard integrals	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$
	Product rule Quotient rule Standard integrals Area of region enclosed by a	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$
5.11 AHL	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$
5.11	Product rule Quotient rule Standard integrals Area of region enclosed by a	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$
5.11 AHL	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$
5.11 AHL	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$
5.11 AHL	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$
5.11 AHL	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$
5.11 AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$
5.11 AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y -axes Volume of revolution about x or y -axes Acceleration Distance travelled from t_1 to t_2	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int e^x dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $disp = \int_{t_1}^{t_2} v(t) dt$
5.11 AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled from t ₁ to t ₂ Displacement	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $disp = \int_{t_1}^{t_2} v(t) dt$ $y_{n+1} = y_n + h \times f(x_n, y_n); x_{n+1}$
AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled from t ₁ to t ₂ Displacement from t ₁ to t ₂ Euler's method	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $y_{n+1} = y_n + h \times f(x_n, y_n); x_{n+1}$ $\text{where } h \text{ is a constant (step length)}$
5.11 AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled from t ₁ to t ₂ Displacement from t ₁ to t ₂ Euler's method	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int \frac{1}{\cos^2 x} dx = \tan x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $y_{n+1} = y_n + h \times f(x_n, y_n); x_{n+1} = x_n + h$ where h is a constant (step length) $x_{n+1} = x_n + h \times f(x_n, y_n, t_n)$
AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled from t ₁ to t ₂ Displacement from t ₁ to t ₂ Euler's method	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $y_{n+1} = y_n + h \times f(x_n, y_n); x_{n+1} = x_n + h \text{ where } h \text{ is a constant (step length)}$ $x_{n+1} = x_n + h \times f_2(x_n, y_n, t_n)$ $y_{n+1} = t_n + h \times f_2(x_n, y_n, t_n)$ $t_{n+1} = t_n + h \times f_2(x_n, y_n, t_n)$ $t_{n+1} = t_n + h \times f_1(x_n, y_n, t_n)$
AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled from t ₁ to t ₂ Displacement from t ₁ to t ₂ Euler's method for coupled systems	$y = uv \to \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \to \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $y_{n+1} = y_n + h \times f(x_n, y_n); x_{n+1} = x_n + h$ where h is a constant (step length) $x_{n+1} = x_n + h \times f(x_n, y_n, t_n)$ $y_{n+1} = y_n + h \times f(x_n, y_n, t_n)$ $y_{n+1} = y_n + h \times f(x_n, y_n, t_n)$ $y_{n+1} = y_n + h \times f(x_n, y_n, t_n)$
AHL 5.12	Product rule Quotient rule Standard integrals Area of region enclosed by a curve and x or y-axes Volume of revolution about x or y-axes Acceleration Distance travelled from t ₁ to t ₂ Displacement from t ₁ to t ₂ Euler's method Euler's method for coupled	$y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\int \frac{1}{x} dx = \ln x + C$ $\int \sin x dx = -\cos x + C$ $\int \cos x dx = \sin x + C$ $\int e^x dx = e^x + C$ $A = \int_a^b y dx \text{ or } A = \int_a^b x dy$ $V = \int_a^b \pi y^2 dx \text{ or } V = \int_a^b \pi x^2 dy$ $a = \frac{dv}{dt} = \frac{d^2s}{dt^2} = v\frac{dv}{ds}$ $dist = \int_{t_1}^{t_2} v(t) dt$ $y_{n+1} = y_n + h \times f(x_n, y_n); x_{n+1} = x_n + h \text{ where } h \text{ is a constant (step length)}$ $x_{n+1} = x_n + h \times f_2(x_n, y_n, t_n)$ $y_{n+1} = t_n + h \times f_2(x_n, y_n, t_n)$ $t_{n+1} = t_n + h \times f_2(x_n, y_n, t_n)$ $t_{n+1} = t_n + h \times f_1(x_n, y_n, t_n)$