Applications \& Interpretation

1 Page Formula Sheet IB Mathematics SL \& HL
 First examinations 2021

Prior learning - SL \& HL	
Area: parallelogram	$A=b h, b=$ base, $h=$ height
Area: triangle	$A=\frac{1}{2}(b h), b=$ base, $h=$ height
Area: trapezoid	$A=\frac{1}{2}(a+b) h, a, b=$ parallel sides, $h=$ height
Area: circle	$A=\pi r^{2}, r=$ radius
Circumference circle	$C=2 \pi r, r=$ radius
Volume: cuboid	$V=l w h, l=\text { length, } w=\text { width, } h=$ height
Volume: cylinder	$V=\pi r^{2} h, r=$ radius, $h=$ height
Volume: prism	$V=A h, A=$ cross-section area, $h=$ height
Area: cylinder curve	$A=2 \pi r h, r=$ radius, $h=$ height
Distance between two points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of midpoint	$\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
Prior learning - HL only	
Solutions of a quadratic equation	$x=\frac{a x^{2}+b x+c=0}{-b \pm \sqrt{b^{2}-4 a c}}, a \neq 0$

Topic 1: Number and algebra - SL \& HL		
$\begin{aligned} & \text { SL } \\ & 1.2 \end{aligned}$	The $\boldsymbol{n}^{\text {th }}$ term of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$
	The sum of \boldsymbol{n} terms	$S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d=\frac{n}{2}\left(u_{1}+u_{n}\right)\right.$
$\begin{array}{\|l\|} \hline \mathrm{SL} \\ 1.3 \\ \hline \end{array}$	The $\boldsymbol{n}^{\text {th }}$ term of a geometric sequence	$u_{n}=u_{1} r^{n-1}$
	The sum of \boldsymbol{n} terms	$S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
$\begin{aligned} & \text { sL } \\ & 1.4 \end{aligned}$	Compound interest	$F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}$ FV is the future value, $P V$ is the present value, n is the number of years, k is the number of compounding periods per year, $\mathrm{r} \%$ is the nominal annual rate of interest
SL 1.5	Exponents \& logarithms	$a^{x}=b \Leftrightarrow x=\log _{a} b, a>0, b>0, a \neq 1$
$\begin{aligned} & \text { SL } \\ & 1.6 \end{aligned}$	Percentage error	$\varepsilon=\left\|\frac{v_{a}-v_{e}}{v_{e}}\right\| \times 100 \%$ $v_{e}=$ the exact value and $v_{a}=$ the approximate value
Topic 1: Number and algebra - HL only		
$\begin{aligned} & \text { AHL } \\ & 1.9 \end{aligned}$	Laws of logarithms	$\begin{gathered} \log _{a} x y=\log _{a} x+\log _{a} y \\ \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\ \log _{a} x^{m}=m \log _{a} x \text { For } x, y, a>0 \end{gathered}$
$\begin{aligned} & \text { AHL } \\ & 1.11 \end{aligned}$	The sum of an infinite geometric sequence	$S_{\infty}=\frac{u_{1}}{1-r},\|r\|<1$
$\begin{aligned} & \text { AHL } \\ & 1.12 \end{aligned}$	Complex numbers Discriminant	$\begin{gathered} z=a+b i \\ \Delta=b^{2}-4 a c \end{gathered}$
$\begin{aligned} & \text { AHL } \\ & 1.13 \end{aligned}$	Modulus-argument (polar) \& exponential (Euler) form	$z=r(\cos \theta+i \sin \theta)=r e^{i \theta}=r c i s$
$\begin{array}{\|l\|l\|} \hline \text { AHL } \\ 1.14 \end{array}$	Determinant of a 2×2 matrix	$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \rightarrow \operatorname{det} A=\|A\|=a d-b c$
	Inverse of a 2×2 matrix	$A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
$\begin{aligned} & \text { AHL } \\ & 1.15 \end{aligned}$	Power formula for a matrix	$M^{n}=P D^{n} P^{-1}$, where \boldsymbol{P} is the matrix of eigenvectors and \boldsymbol{D} is the diagonal matrix of eigenvalues

Topic 2: Functions - SL \& HL		
$\left.\right\|_{2.1} ^{s .1}$	Equations of a straight line	$\begin{gathered} y=m x+c ; a x+b y+d=0 ; \\ y-y_{1}=m\left(x-x_{1}\right) \end{gathered}$
	Gradient formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\begin{aligned} & 5 \mathrm{SL} \\ & 2.5 \end{aligned}$	Axis of symmetry of a quadratic function	$f(x)=a x^{2}+b x+c \rightarrow x=\frac{-b}{2 a}$
Topic 2: Functions - HL only		
${ }_{2.9}^{\mathrm{AHLL}}$	Logistic function	$f(x)=\frac{L}{1+C e^{-k x}}, L, k, C>0$

Topic 3: Geometry and trigonometry - SL \& HL		
$\begin{aligned} & \text { SLL } \\ & 3.1 \end{aligned}$	Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ \& $\left(x_{2}, y_{2}, z_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$
	Coordinates of the midpoint of a line segment	$\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2} ; \frac{z_{1}+z_{2}}{2}\right)$
	Volume: rightpyramid	$V=\frac{1}{3} A h, A=$ base area, $h=$ heigh
	Volume: right cone	$V=\frac{1}{3} \pi r^{2} h, r=$ radius, $h=$ height
	Area: cone	$A=\pi r l, r=$ radius, $l=$ slant height
	Volume: sphere	$V=\frac{4}{3} \pi r^{3}, r=$ radius
	Surface: sphere	$A=4 \pi r^{2}, r=$ radius
$\begin{aligned} & \mathrm{SL} \\ & 3.2 \end{aligned}$	Sine rule	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
	Cosine rule	$\begin{gathered} c^{2}=a^{2}+b^{2}-2 a b \cos C \\ \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \end{gathered}$
	Area of a triangle	$A=\frac{1}{2} a b \sin C$
$\begin{aligned} & \mathrm{SL} \\ & 3.4 \end{aligned}$	Length of an arc	$\begin{array}{r} l=\frac{\theta}{360} \times 2 \pi r ; \\ \theta=\text { angle in degrees, } r=\text { radius } \end{array}$
	Area of a sector	$\begin{array}{r} A=\frac{\theta}{360} \times \pi r^{2} \\ \theta=\text { angle in degrees, } r=\text { radius } \end{array}$
Topic 3: Geometry and trigonometry - HL only		
$\left.\right\|_{3.7} ^{\mathrm{AHL}}$	Length of an arc	$l=r \theta ; r=$ radius, $\theta=$ angle in radians
	Area of a sector	$A=\frac{1}{2} r^{2} \theta$
$\left\lvert\, \begin{aligned} & \text { AHL } \\ & 3.8 \end{aligned}\right.$	Identities	$\begin{gathered} \cos ^{2} \theta+\sin ^{2} \theta=1 \\ \tan \theta=\frac{\sin \theta}{\cos \theta} \end{gathered}$
${ }_{3.9}^{\mathrm{AHL}}$	Transformation matrices	$\left(\begin{array}{cc}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)$ reflection in the line $y=(\tan \theta) x$ $\left(\begin{array}{cc} \mathrm{k} & 0 \\ 0 & 1 \end{array}\right)$ horizontal stretch by scale factor of k $\left(\begin{array}{ll} 1 & 0 \\ 0 & k \end{array}\right)$ vertical stretch with scale factor of k $\left(\begin{array}{cc}\mathrm{k} & 0 \\ 0 & k\end{array}\right)$ centre (0,0) enlargement with scale factor of k $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, anticlockwise rotation of angle θ about the origin $(\theta>0)$ $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, clockwise rotation of angle θ about the origin $(\theta>0)$
$\begin{aligned} & \text { AHL } \\ & 3.10 \end{aligned}$	Magnitude of a vector	$\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$
$\left\lvert\, \begin{aligned} & \text { AHL } \\ & 3.11 \end{aligned}\right.$	Vector equ. of a line	$r=a+\lambda b$
	Parametric form of the Equ. of a line	$x=x_{0}+\lambda l, y=y_{0}+\lambda m, z=z_{0}+\lambda n$
$\left.\right\|_{3.13} ^{\mathrm{AHL}}$	Scalar product	$\begin{gathered} v \cdot w=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} \\ v \cdot w=\|v\|\|w\| \cos \theta \end{gathered}$ θ : angle between v and w
	Angle between two vectors	$\cos \theta=\frac{v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}}{\|v\|\|w\|}$
	Vector product	$\begin{gathered} v \times w=\left(\begin{array}{l} v_{2} w_{3}-v_{3} w_{2} \\ v_{3} w_{1}-v_{1} w_{3} \\ v_{1} w_{2}-v_{2} w_{1} \end{array}\right) \\ \|v \times w\|=\|v\|\|w\| \sin \theta \end{gathered}$ $\theta \text { : angle between } v \text { and } \mathrm{w}$
	Area of a parallelogram	$A=\|\boldsymbol{v} \times \boldsymbol{w}\|, \boldsymbol{v}$ and \boldsymbol{w} form two adjacent sides of a parallelogram

The IB aims to develop inquiring, knowledgeable and caring young people who help to create a better and more peaceful world through intercultural understanding and respect.

Topic 4: Statistics and probability - SL \& HL		
4.2	Interquartile range	$I Q R=Q_{3}-Q_{1}$
$\begin{aligned} & \mathrm{SL} \\ & 4.3 \end{aligned}$	Mean, \bar{x}, of a set of data	$\bar{x}=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n} \text {, where } n=\sum_{i=1}^{k} f_{i}$
${ }_{4.5}^{\text {4t }}$	Probability of an event A	$P(A)=\frac{n(A)}{n(u)}$
	Complementary events	$P(A)+P\left(A^{\prime}\right)=1$
${ }_{4.6}^{\text {st }}$	Combined events	$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
	Mutually exclusive events	$P(A \cup B)=P(A)+P(B)$
	Conditional probability	$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
	Independent events	$P(A \cap B)=P(A) P(B)$
$\begin{aligned} & \text { SL } \\ & 4.7 \end{aligned}$	Expected value of a discrete random variable X	$E(X)=\sum x P(X=x)$
$\begin{aligned} & \mathrm{SL} \\ & 4.8 \end{aligned}$	Binomial distribution Mean -Variance	$\begin{aligned} & X \sim B(n, p) \\ & E(X)=n p ; \operatorname{Var}(X)=n p(1-p) \end{aligned}$
Topic 4: Statistics and probability - HL only		
$\begin{aligned} & \mathrm{AHL} \\ & 4.14 \end{aligned}$	Linear transformation of a single random variable	$\begin{aligned} & E(a X+b=a E(X)+b \\ & \operatorname{Var}\left(a X+=a^{2} \operatorname{Var}(X)\right. \end{aligned}$
	Linear combinations of n independent random variables, $X_{1}, X_{2}, \ldots, X_{n}$	$\begin{aligned} & E\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right) \\ & =a_{1} E\left(X_{1}\right) \pm a_{2} E\left(X_{2}\right) \pm \ldots \pm a_{n} E\left(X_{n}\right) \\ & \operatorname{Var}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right) \\ & =a_{1}^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \operatorname{Var}\left(X_{2}\right)+\cdots \\ & \quad+a_{n}^{2} \operatorname{Var}\left(X_{n}\right) \end{aligned}$
	Unbiased estimate of population variance	$s_{n-1}^{2}=\frac{n}{n-1} s_{n}^{2}$ Sample statistics
${ }_{4.17}^{\text {AHIL }}$	Poisson distribution Mean Variance	$\begin{aligned} & X \sim \operatorname{Po}(m) \\ & E(X)=m ; \operatorname{Var}(X)=m \end{aligned}$
${ }_{4.19}^{\text {AHL }}$	Transition matrices	$T^{n} s_{0}=s_{n}$, where s_{0} is the initial state
Topic 5: Calculus - SL \& HL		
${ }_{5}^{51}$	Derivative of x^{n}	$f(x)=x^{n} \rightarrow f^{\prime}(x)=n x^{n-1}$
${ }_{5.5}^{\text {st }}$	Integral of x^{n}	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$
	Area of region enclosed by a curve $y=f(x)$ and the x-axis	$A=\int_{a}^{b} y d x$, where $f(x)>0$
$\begin{aligned} & \text { SL } \\ & 5.8 \end{aligned}$	The trapezoidal rule	$\begin{aligned} & \int_{a}^{b} y d x \approx \frac{1}{2} \mathrm{~h}\left(\left(\mathrm{y}_{0}+\mathrm{y}_{\mathrm{n}}\right)+2\left(\mathrm{y}_{1}+\right.\right. \\ & \left.\left.\mathrm{y}_{2}+\ldots+\mathrm{y}_{\mathrm{n}-1}\right)\right) \end{aligned}$
Topic 5: Calculus - HL only		
$\begin{aligned} & \text { AHL } \\ & 5.9 \end{aligned}$	Derivative of $\boldsymbol{\operatorname { s i n }} x$	$f(x)=\sin x \rightarrow f^{\prime}(x)=\cos x$
	Derivative of $\cos x$	$f(x)=\cos x \rightarrow f^{\prime}(x)=-\sin x$
	Derivative of $\boldsymbol{\operatorname { t a n }} x$ Derivative of e^{x}	$\begin{gathered} f(x)=\tan x \rightarrow f^{\prime}(x)=\frac{1}{\cos ^{2} x} \\ f(x)=e^{x} \rightarrow f^{\prime}(x)=e^{x} \end{gathered}$
	Derivative of $\ln x$	$f(x)=\ln x \rightarrow f^{\prime}(x)=\frac{1}{x}$
	Chain rule	$y=g(u), u=f(x) \rightarrow \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
	Product rule	$y=u v \rightarrow \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
	Quotient rule	$y=\frac{u}{v} \rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\begin{array}{\|l\|l\|} \text { AHL } \\ 5.11 \end{array}$	Standard integrals	$\begin{gathered} \int \frac{1}{x} d x=\ln \|x\|+C \\ \int \sin x d x=-\cos x+C \\ \int \cos x d x=\sin x+C \\ \int \frac{1}{\cos ^{2} x} d x=\tan x+C \\ \int e^{x} d x=e^{x}+C \end{gathered}$
$\begin{aligned} & \mathrm{AHL} \\ & 5.12 \end{aligned}$	Area of region enclosed by a curve and x or y axes	$A=\int_{a}^{b}\|y\| d x$ or $A=\int_{a}^{b}\|x\| d y$
	Volume of revolution about x or y-axes	$V=\int_{a}^{b} \pi y^{2} d x$ or $V=\int_{a}^{b} \pi x^{2} d y$
$\begin{aligned} & \text { AHL } \\ & 5.13 \end{aligned}$	Acceleration	$a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=v \frac{d v}{d s}$
	Distance travelled from t_{1} to t_{2}	$d i s t=\int_{t_{1}}^{t_{2}}\|v(t)\| d t$
	Displacement from t_{1} to t_{2}	$\operatorname{disp}=\int_{t_{1}}^{t_{2}} v(t) d t$
${ }_{\text {ath }}^{\text {AHL }}$	Euler's method	$\begin{aligned} y_{n+1}=y_{n}+h \times f\left(x_{n}, y_{n}\right) & ; x_{n+1} \\ & =x_{n}+h \end{aligned}$ where h is a constant (step length)
	Euler's method for coupled systems	$\begin{aligned} x_{n+1}= & x_{n}+h \times f_{1}\left(x_{n}, y_{n}, t_{n}\right) \\ y_{n+1}= & y_{n}+h \times f_{2}\left(x_{n}, y_{n}, t_{n}\right) \\ & t_{n+1}=t_{n}+h \end{aligned}$ where h is a constant (step length)
$\begin{aligned} & \mathrm{AHL} \\ & 5.17 \end{aligned}$	Exact solution for coupled linear differential equations	$x=A e^{\lambda_{1} t} p_{1}+B e^{\lambda_{2} t} p_{2}$

